On codes meeting the Griesmer bound
نویسنده
چکیده
We investigate codes meeting the Griesmer bound. The main theorem of this article is the generalization of the nonexistence theorem of [7] to a larger class of codes. keywords: Griesmer bound, extending codes, nonexistence theorem, code construction
منابع مشابه
Characterization results on weighted minihypers and on linear codes meeting the Griesmer bound
We present characterization results on weighted minihypers. We prove the weighted version of the original results of Hamada, Helleseth, and Maekawa. Following from the equivalence between minihypers and linear codes meeting the Griesmer bound, these characterization results are equivalent to characterization results on linear codes meeting the Griesmer bound. 1. Linear codes meeting the Griesme...
متن کاملDivisibility of Codes Meeting the Griesmer Bound
The brackets of ``[n, k, d]'' signal that C is linear, and n is the length, k the dimension, and d the minimum weight of C. The bound was proved by Griesmer in 1960 for q=2 and generalized by Solomon and Stiffler in 1965. Over the years, much effort has gone into constructing codes meeting the bound or showing, for selected parameter values, that they do not exist. This effort is part of the mo...
متن کاملA New Class of Nonbinary Codes Meeting the Griesmer Bound
A new class of codes over GF(q’) that meet the Griesmer bound are constructed in a simple way from the Solomon and Stiffler codes over GF(q). The new codes are, in general, not equivalent to the Solomon and Stiffler codes whenever I > 1.
متن کاملParameters for which the Griesmer bound is not sharp
7 We prove for a large class of parameters t and r that a multiset of at most t d−k + r d−k−2 points in PG(d, q) that blocks every k-dimensional subspace at least t times must contain a sum of t subspaces of codimension k. 9 We use our results to identify a class of parameters for linear codes for which the Griesmer bound is not sharp. Our theorem generalizes the non-existence results from Maru...
متن کاملLinear codes meeting the Griesmer bound, minihypers, and geometric applications
Coding theory and Galois geometries are two research areas which greatly influence each other. In this talk, we focus on the link between linear codes meeting the Griesmer bound and minihypers in finite projective spaces. Minihypers are particular (multiple) blocking sets. We present characterization results on minihypers, leading to equivalent characterization results on linear codes meeting t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 274 شماره
صفحات -
تاریخ انتشار 2004